Renal Angioembolisation in the Management of Bleeding Post Percutaneous Nephrolithotomy- A Retrospective Study

DEVARA ANIL KASHI VISHNUVARDHAN¹, SONICA SHARMA²

ABSTRACT

Introduction: Renal Angioembolisation (RAE) plays a vital role in the treatment of renal bleeding after Percutaneous Nephrolithotomy (PCNL). Renal pseudoaneurysm and arteriovenous fistulas following extended haemorrhages after PCNL are the most serious complications of this operation.

Aim: To retrospectively analyse the patients for the management of bleeding post PCNL and to analyse the efficacy of renal angioembolisation.

Materials and Methods: This was a retrospective study conducted from from May 2019 to June 2020, on a total of 32 patients, who underwent PCNL for nephrolithiasis, experienced haematuria and were referred to Interventional Radiology Department of tertiary care teaching hospital for renal angioembolisation. The patients who underwent a postoperative Computed Tomography (CT) scan to assess the cause of bleeding were included. Past medical records of all 32 patients were collected in terms of patient particulars, surgical details of PCNL, development of post PCNL haematuria between 5th and 14th postoperative days as a complication necessitating a hospital admission, digital subtraction angiographic findings, types of embolisation materials used and follow-up information. Data was analysed statistically using Sigmamplot software version 10.0 and represented in the form of percentages for all the study parameters.

Results: Of the 32 patients who were referred for renal angioembolisation in management of bleeding after PCNL, there were 21 males and 11 females with average age of 45.6±11.2 years. Right kidney was involved in 14 cases (43.7%) and left kidney was involved in 18 cases (56.3%). A total of 31 patients revealed abnormal angiographic findings with Pseudoaneurysms (PA) in 29 (90.6%), arteriovenous fistula in 2 (6.3%) patients. One patient (3.1%) showed negative findings. A total of 31 patients underwent successful embolisation and haemostasis achieved. A total of 28 patients were embolised with metallic coils, Polyvinyl Alcohol Particles (PVA) with gelatine sponge, one patient with metallic coils and liquid embolic agent and two patients with metallic coils and gelatine sponges. There was 100% success rate and the patients were followed from first to 18 months for any recurrence of bleeding.

Conclusion: Renal angioembolisation is minimally invasive, extremely safe and effective to stop renal bleeding after PCNL.

INTRODUCTION

For renal stones and some upper ureteric stones, PCNL is the treatment of choice. It has been carried out since the 1980s, with average success rates reaching 90% [1]. Technological and instrumental advances have decreased the complication rates associated with this procedure. However, percutaneous renal surgery is identified with complications such as haemorrhage, experienced in 1-23% of cases [2].

A well-known cause of bleeding after PCNL is renal vessel damage with the subsequent development of arteriovenous fistulas or PA. Bleeding associated with PCNL is often considered to be the result of damage to the lower or middle calyceal regions of either the anterior or posterior segmental arteries [3].

Haematuria is a considerable and lethal PCNL complicating factor that requires a precise management [4,5]. Controlling severe bleeding was ineffective with conservative treatment, surgical partial nephrectomy and disease-side nephrectomy procedures. The surgical resection rate in response to bleeding is more than 50%, although such procedures have the drawbacks of severe damage and complications [6]. More significantly, some patients suffer reduced renal function and renal damage is further exacerbated [7].

In the management of renal bleeding after PCNL, renal angioembolisation has played a crucial role. The location of the bleeding, the volume of bleeding and the embolisation procedure can be calculated both in a timely and precise manner to effectively stop the bleeding at the same time while optimising the safety of the renal function.

Keywords: Arteriovenous fistula, Haematuria, Haemorrhage, Nephrolithiasis, Pseudoaneurysm
The current retrospective study was conducted in the Department of Radiology, Maharajah’s Institute of Medical Sciences (MIMS), Nellimarla, Vizianagaram district, Andhra Pradesh, India. A total of 32 patients were referred to interventional Radiology Department, tertiary care teaching hospital for renal angioembolisation were reviewed from January 2012 to December 2018. The present study was done from May 2019 to June 2020. All patients provided written informed consent for the use of their data in clinical research.

Inclusion criteria: The data of the patients, who underwent PCNL for nephrolithiasis and experienced haematuria and underwent a postoperative CT scan, to assess the cause of bleeding were included in the study.

Exclusion criteria: The data of patients with kidney anomalies (e.g., horseshoe kidney, renal hypoplasia, polycystic kidney disease, calyceal diverticulum, etc.), and patients who underwent simultaneous bilateral procedures and patients who were referred with post PCNL massive haematuria from somewhere else, were excluded from study. Past medical records of all 32 patients were collected and data were organised systematically in terms of patient particulars, surgical details of PCNL, development of post PCNL haematuria between 5th and 14th postoperative days as a complication necessitating a hospital admission, digital subtraction angiographic findings, types of embolisation materials used and follow-up information. Patient characteristics including age, sex, stone location were recorded.

Hospital Protocols

A catheter for the ureteral occlusion balloon is implanted using a cystoscope. PCNL procedure has been conducted with fluoroscopic aid in the prone position. For tract dilatation, a balloon dilator (X-FORCE® N30 Nephrostomy Balloon Dilatation Catheter, Bard Medical, GA, USA) and a 30F Amplatz sheath is used. For stone fragmentation and extraction, a stiff 24F nephroscope (Richard Wolf, Knittlingen, Germany) is used. Twenty-four hours after the nephrostomy tube has been removed, the per-urethral catheter is removed.

Transfemoral arterial catheterisation is performed under local anaesthesia. After vascular access is obtained, a 4- x or 5-French pigtail catheter is placed in the abdominal aorta. Digital Subtraction Angiography (DSA) is performed to evaluate the renal arteries, accessory renal arteries, lumbar arteries, and other collateral vessels. Then, angiography with a 4- x or 5-Fr Cobra catheter is performed to evaluate the renal artery and the location of the lesions. A 2.7-Fr microcatheter is used for super selective embolisation of the abnormal artery as distally as possible to minimise the loss of normal renal parenchyma. Depending upon the type of lesions, embolisation materials such as coils, gelatin sponge, PVAs of 300 to 500 microns, and liquid embolic agents can be used. Angiography is practiced upon embolisation to check the stenosis of the unusual arteries and to ascertain the percentage of parenchymal loss (infarction area). Just after the surgery, all of the patients will be constantly regulated to rule out the eventual rebreeding.

Statistical Analysis

Data was analysed statistically using Sigmaplot software version 10.0 and represented in the form of percentages for all the study parameters. RESULTS

In the present study of 32 patients, there were 21 males and 11 females with mean age of 45.6±11.2 years. Clinical characteristics of all patients are presented in [Table/Fig-1]. Right kidney was involved in 14 cases (43.7%) and left kidney was involved in 18 cases (56.3%). Angiographic findings were seen between 5th and 14th day of post PCNL. Persistent and recurrent haematuria was the most common presenting feature in all the 32 patients following PCNL. Thirty one patients revealed abnormal angiographic findings with PA in 29 (90.6%), arteriovenous fistula in 2 (6.3%) patients. One patient (3.1%) showed negative findings. This patient was admitted with haematuria after PCNL like other patients and was referred for renal angioembolisation but his renal angiographic findings did not reveal any abnormality, hence angiographically negative findings. Renal angioembolisation was not done for the patient and he was treated conservatively with blood transfusion, there was no recurrence of haematuria on follow-up of this patient. Thirty-one patients underwent successful embolisation and haemostasis achieved. Twenty eight patients were embolised with metallic coils, PVA with gelatine sponge, one patient with metallic coils and liquid embolic agent and two patients with metallic coils and gelatine sponges. The success rate of treatment was 100%. These patients were followed for 1 to 18 months for any recurrence of bleeding. There were no significant procedure related complications. [Table/Fig-2] showed the embolisation of post PCNL arteriovenous fistula in the lower pole of right kidney and [Table/Fig-3] showed the embolisation of pseudoaneurysm in the lower pole of left kidney, super selective microcatheter and coiled mass with complete exclusion of pseudoaneurysm from the circulation.

Discussion

In the current retrospective study, 32 patients who developed bleeding after PCNL were treated with renal angioembolism. The success rate of treatment was 100%. There were no significant procedure related complications.
complications. These patients were followed for 1 to 18 months for any recurrence of bleeding. Most common angiographic abnormality was renal pseudoaneurysm which accounted for 29 cases. Each renal artery has an independent blood supply area. There is almost no anatomosis between the arteries in each segment, providing an anatomical basis for super selective arterial embolisation for renal haemorrhaging [15]. Immediate haemostasis, without relapse, can be reached. In order to avoid the relapse and promote renal function efficiency, the embolisation area must therefore be located well apart from either the renal artery and near to the bleeding site [16].

There are many facets to the choosing of embolisation methods. A gelatin sponge, steel band, pva particles, and N-Butyl Cyaanoacrylate (NBCA) glue are involved in arterial embolisation products. Gelatin sponges and spring coils [17] are the most frequently used materials. A medium-effective embolisation material [18] is a gelatin sponge that can quickly absorb blood. Blood can be embolised by sponge gelatin. The spring coil is a stable material for embolisation. According to the diameter of the blood vessels, different sizes of spring coils can be selected [19].

The embolisation site should be as close as possible to the bleeding site and the use of permanent embolisation material is must to achieve haemostasis and to reduce post-treatment recurrences [20]. When the vascular injury is associated with a pseudoaneurysm or an arteriovenous fistula, a metallic coil embolisation or liquid embolic agent or metallic coil with gelatin sponges is effective in completely occluding the bleeder vessel. In summary, after PCNL, renal angiography may identify the location of renal haemorrhaging. The benefits are that it is safe, minimally invasive and effective. In addition, it results in a positive prognosis and less issue, as well as a fast recovery with optimum security [21].

In this group, 28 cases were treated with metallic coils, PVA particles and gelatin sponges, two cases with metallic coils and liquid embolic agent and one case with metallic coils and gelatin sponge. No recurrence was noted in any of the cases on follow-up. A case with negative angiographic findings didn’t undergo embolisation and on follow-up, the bleeding stopped spontaneously with no recurrence. There were no significant procedure related complications. Similar studies by Wen S et al., had reported 20 patients were embolised using metallic coils plus gelatin sponges, accounting for 47.62% [22]. Manjeet A and Pawar P, had reported arteriovenous fistula in two patients and pseudoaneurysm in seven patients were revealed by angiography [23]. Recently, Kim HY et al., [2020] reported after PCNL, 21 patients underwent angioembolisation. Erroneous puncture was noticed in 14 (66.7%) of PCNL angioembolised patients or even in 11 (34.4%) of non-PCNL angioembolised patients [24].

Limitation(s)

Smaller sample size and a retrospective design may be identified as limitations of the present study.

CONCLUSION(S)

Renal angioembolisation can determine the exact site of bleed after PCNL and occlude the bleeder at the same time. It’s extremely safe, minimally invasive, effective in managing bleeding after PCNL and can help preserve renal function, reduce the potential risk of nephrectomy.

REFERENCES

